

EPU 2017, 11-12 juillet 2017 PARIS

Le cours de physique de Karlsruhe

S.Ayrinhac simon.ayrinhac@impmc.upmc.fr

Faculté de Physique

- 1. Préambule : l'opérateur divergence
- 2. Le cours du prof. F. Herrmann

Opérateur divergence

$$\operatorname{div} \overrightarrow{E} = \lim_{V \to 0} \frac{\iint_{S} \overrightarrow{E} \cdot \overrightarrow{dS}}{V} + \operatorname{signifiant}$$

$$\iint_{S} \overrightarrow{E} \cdot \overrightarrow{dS} = \iiint_{V} \operatorname{div} \overrightarrow{E} \cdot \overrightarrow{dS}$$

$$\operatorname{div} \overrightarrow{E} = \frac{\partial E_{x}}{\partial x} + \frac{\partial E_{y}}{\partial y} + \frac{\partial E_{z}}{\partial z} - \operatorname{signifiant}$$

Taux de réponses (en pourcentage au sein de la catégorie)	Limite du flux volumique (équation (2))	Formule de Green-Ostrogradsky (équation (4))	Somme des dérivées partielles en coordonnées cartésiennes (équation (5))	
Étudiant	0 %	0 %	100 %	
Non-spécialiste	0 %	0 %	100 %	
Connaisseur	9 %	12 %	79 %	
Spécialiste	12 %	13 %	75 %	

Taux de réponses (en pourcentage au sein de la catégorie)	Limite du flux volumique (équation (2))	Formule de Green-Ostrogradsky (équation (4))	Somme des dérivées partielles en coordonnées cartésiennes (égration (5))	
Étudiant	0 %	0 %	100 %	
Non-spécialiste	0 %	0 %	100 %	
Connaisseur	9 %	12 %	79 %	
Spécialiste	12 %	13 %	75 %	

Taux de réponses (en pourcentage au sein de la catégorie)	Limite du flux volumique (équation (2))	Formule de Green-Ostrogradsky (équation (4))	Somme des dérivées partielles en coordonnées cartésiennes (équation (5))	
Étudiant	0 %	0 %	100 %	
Non-spécialiste	0 %	0 %	100 %	
Connaisseur	9 %	12 %	79 %	
Spécialiste	12 %	13 %	75 %	

Taux de réponses (en pourcentage au sein de la catégorie)	Limite du flux volumique (équation (2))	Formule de Green-Ostrogradsky (équation (4))	Somme des dérivées partielles en coordonnées cartésiennes (équation (5))	
Étudiant	0 %	0 %	100 %	
Non-spécialiste	0 %	0 %	100 %	
Connaisseur	9 %	12 %	79 %	
Spécialiste	12 %	13 %	75 %	

« Ces résultats posent la question de l'introspection des enseignants sur le sens physique des éléments qu'ils présentent. Peut-on se contenter de parachuter des formules absconses et suggérer ainsi que l'épistémologie de la physique consiste essentiellement en la manipulation symbolique de quantités vidées de leur signification ? Au risque d'être outrancier et provocateur, comprenons-nous encore ce que nous enseignons ? »

- 1. Préambule : l'opérateur divergence
- 2. L'approche du prof. F. Herrmann

Prof. Friedrich Herrmann (Karlsruhe)

Prof. Dr. Friedrich Herrmann f.herrmann@kit.edu Tel: 0721-608-43364

Postadresse:

Institut für Theoretische Festkörperphysik Karlsruher Institut für Technologie 76128 Karlsruhe

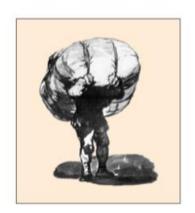
Lieferadresse:

Institut für Theoretische Festkörperphysik Karlsruher Institut für Technologie – Campus Süd Wolfgang-Gaede-Straße 1 76131 Karlsruhe

Le KPK : un cours de physique basé sur des analogies

• <u>« KPK »</u> BUP n° 870, vol.99, janv. 2005

par Friedrich HERRMANN Abteilung für Didaktik der Physik Universität Karlsruhe - D-76128 Karlsruhe Allemagne


friedrich.herrmann@physik.uni-karlsruhe.de

• Le Poids de l'Histoire sur la Physique

F.Herrmann & G.Job, trad. Antoine Archer, Jean-François Combes et Alain Xémard (2016)

Le poids de l'Histoire sur la Physique

Quelques propositions pour un enseignement plus efficace

FRIEDRICH HERRMANN ET GEORG JOB

• Structures communes dans les équations

Champ scientifique	Grandeur extensive	Grandeur intensive	Courant	Flux d'énergie
Électricité	Charge électrique (Q)	Potentiel électrique	Courant électrique	$P = U \cdot I$
Mécanique	Quantité de mouvement (p)	Vitesse	Courant mécanique (= force)	$P = v \cdot F$
Thermodynamique	Entropie (S)	Température absolue	Courant d'entropie	$P = T \cdot I_{S}$
Chimie	Quantité de matière (n)	Potentiel chimique	Courant de matière	$P = \mu \cdot I_n$

$$\frac{\frac{dQ}{dt}}{\frac{dP}{dt}} = I$$

$$\frac{\frac{dP}{dt}}{\frac{dS}{dt}} = I_S + \Sigma_S$$

$$\frac{\frac{dQ}{dt}}{\frac{dR}{dt}} = I_n + \Sigma_R$$

Force = « courant de quantité de mouvement »

• Identifier les sujets superflus, obsolètes ou traités de manière inappropriée

Mini florilège:

- le terme « force électromotrice » devrait être abandonné
- toutes les grandeurs physiques sont des variables d'état, sauf Q et W
- certains sujets peuvent être abandonnés, comme la dilatation thermique, ou l'origine de la couleur bleue du ciel (et les autres couleurs ?)
- il ne sert à rien de demander « qu'est ce que l'énergie en réalité ? »

• ...

• Identifier les sujets superflus, obsolètes ou traités de manière inappropriée

→ Exemple le plus intéressant : l'entropie S

L'approche « classique »
$$\Delta S^{rev} = \int \frac{\delta \mathcal{Q}}{T}$$

$$S = k_B \ln \Omega$$

L'approche de F. Herrmann

Entropie = « quantité de chaleur »

• Identifier les sujets superflus, obsolètes ou traités de manière inappropriée

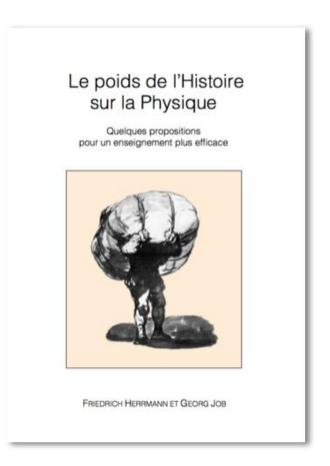
Processus historique:

- « chaleur (heat) »: introduite par Joseph Black (1802)
- la même que chez S. Carnot, « *Réflexions sur la puissance motrice du feu* » (1824)
- → La chaleur devient une forme d'énergie
- réinventée par R. Clausius, sous le nouveau nom « entropie »
- → L'entropie s'impose, mais la vrai signification est perdue
- identité mise en lumière par H.L. Callendar (1911)
- livre de G. Job, « L'entropie en tant que chaleur » (1972)

Conclusion

→ Bien que les travaux de F. Herrmann soient controversés, ils peuvent alimenter notre réflexion sur le sens physique des concepts que nous enseignons

Le poids de l'Histoire sur la Physique


Quelques propositions pour un enseignement plus efficace

FRIEDRICH HERRMANN ET GEORG JOB

Conclusion

→ Bien que les travaux de F. Herrmann soient controversés, ils peuvent alimenter notre réflexion sur le sens physique des concepts que nous enseignons

Merci de votre attention